1. Given the following reaction: (Balance the equation first!)

 $C_3H_8 + O_2 ----> CO_2 + H_2O$

- a. If you start with 14.8 g of C_3H_8 and 3.44 g of O_2 determine the limiting reagent
- b. Determine the number of moles of carbon dioxide produced
- c. Determine the number of grams of H_2O produced
- d. Determine the number of grams of excess reagent left

2. Given the following equation:

Al₂(SO₃)₃ + 6 NaOH -----> 3 Na₂SO₃ + 2 Al(OH)₃

- a. If 10.0 g of $Al_2(SO_3)_3$ is reacted with 10.0 g of NaOH, determine the limiting reagent
- b. Determine the number of moles of Al(OH)₃ produced
- c. Determine the number of number grams of Na_2SO_3 produced
- d. Determine the number of grams of excess reagent left over in the reaction

3. Given the following equation:

 AI_2O_3 + Fe -----> Fe₃O₄ + AI

- a. If 25.4 g of Al_2O_3 is reacted with 10.2 g of Fe, determine the limiting reagent
- b. Determine the number of moles of Al produced
- c. Determine the number of grams Fe₃O₄ produced
- d. Determine the number of grams of excess reagent left over in the reaction

Limiting Reagent Worksheet #2

1. Consider the reaction

 $I_2O_5(g) + 5 CO(g) -----> 5 CO_2(g) + I_2(g)$

a. 80.00 grams of diliodine pentoxide I_2O_5 reacts with 28.00 grams of carbon monoxide, CO.

Determine the mass of iodine I2, which could be produced?

- b. If, in the above situation, only 0.160 moles of iodine, I2 was produced.
 - a. What mass of iodine was produced?
 - b. What percentage yield of iodine was produced
- 2. Zinc and Sulphur react to form zinc sulphide according to the equation. Zn + S -----> ZnS

If 25.0 g of zinc and 30.0 g of Sulphur are reacted,

- a. Which chemical is the limiting reactant?
- b. How many grams of ZnS will be formed?
- c. How many grams of the excess reactant will remain after the reaction is over?
- 3. Which element is in excess when 3.00 grams of Mg is ignited in 2.20 grams of pure oxygen?

What mass is in excess? What mass of MgO is formed?

- 4. How many grams of AI_2S_3 are formed when 5.00 grams of AI is heated with 10.0 grams S?
- 5. When M_0O_3 and Zn are heated together they react

3 Zn(s) + 2 M₀O₃(s) -----> M₀₂O₃(s) + 3 ZnO(s)

What mass of ZnO is formed when 20.0 grams of M_0O_3 is reacted with 10.0 grams of Zn?

- Silver nitrate, AgNO₃, reacts with ferric chloride, FeCl3, to give silver chloride, AgCl, and ferrice nitrate, Fe(NO₃)₃. In a particular experiment, it was planned to mix a solution containing 25.0 g of AgNO₃ with another solution containing 45.0 grams of FeCl₃.
 - a. Write the chemical equation for the reaction.
 - b. Which reactant is the limiting reactant?
 - c. What is the maximum number of moles of AgCl that could be obtained from the mixture?
 - d. What is the maximum number of grams of AgCl that could be obtained?
 - e. How many grams of the reactant in excess will remain after the reaction is over?
- 7. Solid calcium carbonate, CaCO₃, is able to remove sulphur dioxide from wasted gases by the reaction (balanced as written):

 $CaCO_3 + SO_2$ + other reactants -----> CaSO³ + + other products

In a particular experiment, 255 g of $CaCO_3$ was exposed to 135 g of SO_2 in the presence of an excess amount of the other chemicals required for the reaction.

- a. What is the theoretical yield of CaSO₃?
- b. If only 198 g of $CaSO_3$ was isolated from the products, what was the percentage yield of $CaSO_3$ in this experiment?